Automatic Functions, Linear Time and Learning
نویسندگان
چکیده
The present work determines the exact nature of linear time computable notions which characterise automatic functions (those whose graphs are recognised by a finite automaton). The paper also determines which type of linear time notions permit full learnability for learning in the limit of automatic classes (families of languages which are uniformly recognised by a finite automaton). In particular it is shown that a function is automatic iff there is a one-tape Turing machine with a left end which computes the function in linear time where the input before the computation and the output after the computation both start at the left end. It is known that learners realised as automatic update functions are restrictive for learning. In the present work it is shown that one can overcome the problem by providing work tapes additional to a resource-bounded base tape while keeping the update-time to be linear in the length of the largest datum seen so far. In this model, one additional such work tape provides additional learning power over the automatic learner model and two additional work tapes give full learning power. Furthermore, one can also consider additional queues or additional stacks in place of additional work tapes and for these devices, one queue or two stacks are sufficient for full learning power while one stack is insufficient. 2012 ACM CCS: [Theory of computation]: Models of computation—Abstract machines; Logic— Verification by model checking; Formal languages and automata theory; Theory and algorithms for application domains—Machine learning theory.
منابع مشابه
Stock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملOptimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining
The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...
متن کاملThe Study of Automatic and Controlled Data Processing Speed Based on the Stroop Test in Students with Math Learning Disability
Introduction: The study of individual differences in information processing in order to predict the academic achievement of students with math disability is of great importance. The purpose of this study was to study automatic and controlled data processing speed based on the Stroop test in students with math learning disability. Materials and Methods: This descriptive study was causal-comparat...
متن کاملOn the Approximation of Pseudo Linear Systems by Linear Time Varying Systems (RESEARCH NOTE)
This paper presents a modified method for approximating nonlinear systems by a sequence of linear time varying systems. The convergence proof is outlined and the potential of this methodology is discussed. Simulation results are used to show the effectiveness of the proposed method.
متن کاملNeural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012